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On Numerical Differentiation
Algorithms for Nonlinear Estimation

S. Diop, J. W. Grizzle, F. Chaplais

Abstract. Practical methods of differentiating a sig-
nal known only through its on-line samples are much
needed, given the numerous areas in control theory
and practice where differentiation is encountered. This
communication presents theoretical as well as imple-
mentation details on several numerical differentiation
algorithms which may be useful in the area of nonlin-
ear estimation. In particular, these algorithms may be
used as ingredients for alternative solutions to the long-
standing problem of observer design for nonlinear sys-
tems.
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1 Introduction

A ripe application area for numerical differentiation is
observer design for nonlinear systems. The basis for
this has already been described in [6, 7, 5, 3]. This
communication focuses its attention on theoretical and
implementation aspects of several numerical differenti-
ation algorithms.

The difficulty with the implementation of differentia-
tion is that it is an operator which is discontinuous
with respect to norms we usually tend to consider. The
following standard example makes this clear. Assume
y = y(t) ∈ C1(a, b), a < b ∈ IR, so that its derivative x
is in C0(a, b), and endow both C0(a, b) and C1(a, b) with
the uniform norm,

||z||∞ = max
τ∈[a,b]

|z(τ)| .

Suppose that y is known through some experimental
data and hence is uncertain. Write y as

y = y + ε ,

where,

ε(t) = σ sin
2πt
σ2

,

and hence
ẏ(t) = ẏ(t) +

2π
σ

cos
2πt
σ2

.

Therefore, ||y − y||∞ = σ, while ||ẏ − ẏ||∞ = 2π
σ . In

other words, the smaller the uncertainty on the data
the larger the error in the derivative of y. This ab-
stract example hardly exaggerates what happens in real
applications. One of the consequences of this disconti-
nuity of the differentiation operator is that we cannot
use simple schemes such as the backward difference

̂̇y(t) =
y(t) − y(t− T )

T

to implement differentiation operators. The backward
difference scheme is easily seen as equivalent to the dif-
ferentiation scheme obtained through the polynomial
interpolant ŷ(t) = α0 + α1t on the grid consisting of
the 2 instants t − T and t, so that ̂̇y(t) = ˙̂y(t) , where
t − T is a past instant where y is available. Assuming
y to be twice differentiable we then have

y(τ) − ŷ(τ) = (y(τ) − ŷ(τ)) − ε(τ)

=
1
2
ÿ(τ̃)(τ − t+ T )(τ − t) − ε(τ)

for all τ ∈ [t − T, t], where τ̃ is known, by Rolle’s
Theorem, to lie in [t − T, t]. Applying this remain-
der equation at τ = t yields y(t) − ŷ(t) = −ε(t) , hence
ẏ(t) − ̂̇y(t) = −ε̇(t) , that is, the derivative estimation
error through the backward difference scheme is the
derivative of the uncertainty on the data. The back-
ward difference scheme thus has no immunity against
the higher frequency content of this uncertain signal
which tends to drown out the derivative of the true
signal.

Differentiation is well-known as one of the most impor-
tant instances of an ill-posed inverse problem. Describ-
ing efficient algorithms which implement differentiation
has been, and still is, a longstanding numerical analysis
problem. As for many other ill-posed inverse problems
arising in physics and engineering, the formulation of
regularization concepts by A. N. Tikhonov, about four
decades ago, has led to substantial breakthroughs.

This communication is an attempt to collect details on
some of the various numerical differentiation algorithms
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which are most relevant to control theoretic issues in
online estimation. The paper is organized as follows.
We first present differentiation as a typical ill-posed
inverse problem and relate its study to regularization
techniques. Among the latter, mollification is close to
the control theory notion of filtering. For a brief presen-
tation see [5]. Here, three differentiation schemes are
presented in more detail. One is the so-called Savitzky-
Golay differentiation scheme. The second is an aver-
aged finite difference differentiation scheme. And the
last uses wavelet transforms.

2 On regularizations of differen-
tiation

The rth derivative, r ∈ IN, r ≥ 1, of y = y(t) ∈ Cr (a, b)
is a solution, x(t), of the integral equation∫ t

a

1
(r − 1)!

(t− τ)r−1
x(τ)dτ = y(t)

for x. We may always detrend y by replacing it in the
latter equation by

y̌(t) = y(t) −
r−1∑
i=0

1
i!
y(i)(a) (t− a)i

and then assume that y satisfies the initial conditions

y(a) = 0, ẏ(a) = 0, . . . , y(r−1)(a) = 0.

The subspace of Cr (a, b) consisting of functions sat-
isfying the previous initial conditions is denoted by
Cr

0 (a, b). Let

hr(t, τ) =
1

(r − 1)!
(t− τ)r−1 Υ(t− τ)

where Υ is the Heaviside function, i.e.,

Υ(τ) = 1 if τ > 0 and Υ(τ) = 0 if τ <= 0 .

The operator Hr

C0 (a, b) = X → Y = Cr
0 (a, b)

x �→ Hrx

with

(Hrx)(t) =
∫ b

a

hr(t, τ)x(τ)dτ .

is thus one-to-one, and the rth derivative of y ∈ Cr
0 (a, b)

is the unique solution of the Fredholm integral equation
of the first kind

Hrx = y . (1)

Integral operators

x �→ Kx, t �→
∫ b

a

k(t, τ)x(τ)dτ

where a, b ∈ IR, are bounded and compact (they map
bounded sets into relatively compact sets) whenever the
kernel k satisfies one of the following conditions:

i. k is continuous on [a, b] × [a, b] , in which case

||K||∞ = max
a≤t≤b

∫ b

a

|k(t, τ)|dτ .

ii. k is square integrable over [a, b] × [a, b]

||k||2 =

√∫ b

a

∫ b

a

|k(t, τ)|2dτdt < ∞ ,

in which case

||K||2 ≤ ||k||2 .

iii. k is weakly singular, i.e., it is continuous on the
subset of points (t, τ) of [a, b] × [a, b] such that
t 
= τ , and there are reals γ > 0 and ι such that

|k(t, τ)| ≤ γ

|t− τ |ι .

Linear, bounded, one-to-one, compact operators with
infinite dimensional range are known to have un-
bounded inverses (see, e.g., section 2.2 of [9]):

||K−1|| = ∞ ,

where the norm is the operator norm.

The operator K−1 is thus discontinuous implying that
the effect of uncertainties in y may be indefinitely am-
plified in the solution of the equation Kx = y . Such
equations are said to be ill-posed. More precisely, an
equation (or problem) Kx = y resulting from an op-
erator K : X −→ Y on normed spaces is said to be
well-posed if it has one, and only one, solution x for
each given y, and if the solution depends continuously
on the data in the sense that, given a sequence (yn)n∈IN ,
limn→∞ yn = y implies that the corresponding sequence
of solutions, (xn)n∈IN, verifies limn→∞ xn = x .

Given that the kernel of equation (1) satisfies condi-
tions (ii) and (iii) above, differentiation is an ill-posed
problem.

A regularization strategy for an ill-posed problem Kx =
y is a family (Rλ)λ>0 of linear and bounded operators
Rλ : Y −→ X such that limλ→0Rλy = K−1y for all y.

A regularization strategy for the integral equation (1)
is called a differentiation scheme . The regularization
error on uncertain data, y = y + ε , takes the form

K−1y −Rλy =
(
K−1 −Rλ

)
y −Rλε . (2)

It is the sum of two error terms, the first one being con-
tributed by the inaccuracy of the differentiation scheme



on exact data and the second one being the result of the
action of the differentiation scheme on the uncertainty
of the data. It is thus apparent that differentiation
schemes should care about two main features: accuracy
(of the differentiation approximation) on exact data,
and capability of smoothing out uncertainties on the
non exact data. These two tasks are conflicting for the
differentiation operator. In other words, when we try
to improve the accuracy of a differentiation scheme on
exact data by choosing λ small, at the same time we
are most likely amplifying the effect of uncertainties in
the data by increasing the factor ||Rλ||. Therefore, a
differentiation scheme should include, in the choice of
λ, a compromise between accuracy on exact data and
the ability to smooth out data uncertainties.

How to choose a strategy λ(y, ε), for λ? This depends
on what is known about y and ε. The use of a known
stochastic, dynamic model for y in linear estimation
theory problems has been magnificently illustrated in
the Kalman-Bucy filter. In this communication, we as-
sume simpler candidate models for y which are useful
in cases where the given models for y are too complex,
or have low ‘information content’ for the design of a
differentiation scheme.

Let us assume that we know that the uncertainty in y, ε,
is bounded and that we know the value of its bound, σ.
Then we let λ(y, σ) = λ(y, ε). A regularization strategy
is said to be admissible [9] if

λ(y, σ) −−−−−→
σ→0

0 ,

sup
y,||y−y||≤σ

||K−1y −Rλ(y,σ)y|| −−−−−→
σ→0

0 ,

for all y.

Here are the main lines of the so-called spectral design
of regularization strategies. We recall that a singular
system for a linear, bounded, compact operator K over
Hilbert spaces X and Y is a triple

(τi, xi, yi)i∈IN

consisting of positive singular values τi ≥ τi+1, (the
numbers

(
τ2
i

)
i∈IN

being the eigenvalues of K∗K where
K∗ is the adjoint of K), orthonormal bases (xi)i∈IN,
(yi)i∈IN of X and Y , respectively, such that{

Kxi = τiyi ,
K∗yi = τixi

for all i ∈ IN. If K is one-to-one then its singular values
are all positive, and for the equation Kx = y , we have
the following so-called Picard criterion

∞∑
i=0

| (y, yi) |2
τ2
i

< ∞ (3)

and the solution of K(x) = y is given by

x =
∞∑

i=0

(y, yi)
τi

xi , (4)

where (y, yi) denotes the inner product on Y of y and
yi. The Picard criterion reflects the necessary (and suf-
ficient) convergence condition for a series

∑∞
i=0 λiei in

a Hilbert space where (ei) is an orthonormal sequence
of vectors. It is closely related to the invertibility of the
operator K. The unboundedness of K−1 is related to
the fact that the singular values of K accumulate at 0.
It is apparent that we cannot use equation (4) as is to
implement a differentiation scheme since, with experi-
mental data, the high frequency content of ε would tend
to drown out the derivative of the true signal y. The
notion of high frequency content of ε refers here to the
fact that (ε, yi) may be seen as the Fourier coefficients
of ε in the orthonormal sequence (yi)i∈IN.

Spectral regularization strategies then assume the fol-
lowing general form:

Rλy =
∞∑

i=0

ω(λ, τi) (y, yi)xi

where the coefficient 1/τi in equation (4) has been re-
placed by the function ω(λ, τi) for the sake of better be-
havior for low values of τi. For instance, the well-known
Tikhonov regularization corresponds to the choice

ω(λ, µ) =
µ

µ2 + λ
,

while the TSVD (truncated singular value decomposi-
tion) strategy corresponds to

ω(λ, µ) =


1
µ
, µ ≥ λ ,

0, µ < λ .

Details on the TSVD for the differentiation operator Hr

of first order (r = 1) are as follows. A singular system
for H1 is

τi =
2 (b− a)
(2i+ 1)π

,

xi(t) =

√
2

b− a
cos

(
(2i+ 1)

π

2
t− a

b− a

)
,

yi(t) =

√
2

b− a
sin

(
(2i+ 1)

π

2
t− a

b− a

)
.

(5)

If N = N(λ) denotes the largest integer which is lower
than or equal to

1
2

(
2 (b− a)

λπ
− 1

)
,

then the TSVD strategy yields

̂̇y(t) =
N∑

i=0

(2i+ 1)π
2 (b− a)

(y, yi)xi .



The norm of the estimation error

˜̇y(t) = ẏ(t) − ̂̇y(t) =
∞∑

i=N+1

(2i+ 1)π
2 (b− a)

(y, yi)xi−

N∑
i=0

(2i+ 1)π
2 (b− a)

(ε, yi)xi ,

is

||˜̇y(t)||2L2 =
∞∑

i=N+1

(2i+ 1)2 π2

4 (b− a)2
(y, yi)

2 +

N∑
i=0

(2i+ 1)2 π2

4 (b− a)2
(ε, yi)

2
.

For a fixed λ > 0 the estimation error may be large but
is definitely bounded. When λ is made small the first
term converges to 0 while the second term, depending
on the nature of the uncertainty ε, will most likely go
to ∞. Conversely, by making λ large, we reduce the
contribution of the uncertainties at the expense of over
smoothing the derivative. One possible trade-off con-
sists of choosing S and requiring

||˜̇y(t)||2L2 ≤ S .

Then from the above expression of ||˜̇y(t)||2L2 we see that

N(λ)∑
i=0

(2i+ 1)2 π2

4 (b− a)2
(ε, yi)

2 ≤ S

which provides an inequality to solve in λ in order to
obtain a potentially admissible first order differentia-
tion scheme. The extra assumptions needed in prac-
tical implementations of such a regularization strategy
are loosely indicated in the latter inequality. We may,
for instance, assume σ to be, instead of a bound on ε,
a bound on its spectral power density.

3 The Savitzky-Golay differenti-
ation scheme

This is perhaps the simplest differentiation scheme. It
is polynomial in the sense that the basis functions are
polynomials in t. It does not employ orthogonal polyno-
mial basis functions, but rather uses the basis of mono-
mials. We have followed [10] in naming this differenti-
ation scheme after A. Savitzky and J. E. Golay. This
differentiation scheme is singled out here for its speed
(it reduces to a multiplication of the data vector by a
constant matrix which is computed offline once and for
all) and also for its quality which may be sufficient in
many cases.

In what follows, we assume that the data are sampled
at some given frequency, f with T = 1/f . We denote
by W the width of the window of data we use at the

current time, t. Let the sampling instants in the win-
dow be a = t1, t2, . . . , tW = b , and the sampled data
be denoted by

Y =

 y1 = y(t1)
...

yW = y(tW )

 .

As may be suggested by the previous spectral regu-
larization methods, we may truncate formula (4) by
considering finite dimensional subspaces XN of Cr

0 (a, b)
generated by subsequences (xi)1≤i≤N of a singular sys-
tem of Cr

0 (a, b). In practice, we extend this viewpoint
by choosing an arbitrary finite dimensional subspace F
of Cr

0 (a, b) with basis (bj(t))1≤j≤N . Next we search for

a linear estimate ŷ(t) =
∑N

j=1 αjbj(t) in the sense of a
semi-norm on F and then we take

ŷ(r)(t) = ŷ(r)(t)

as estimates of the derivatives of y. Practical choices for
F include subspaces of polynomials, polynomial splines,
trigonometric functions (as in the TSVD), etc.

The semi-norm on F is chosen to be

‖y − ŷ‖2 =
W∑
i=1

(yi − ŷ(ti))
2 =

∥∥Y − βα
∥∥2

where the last symbol || · || is the Euclidean norm, α =
(α1, . . . , αN )′ , and β is the (W ×N)-matrix with coef-
ficients β(i, j) = bj(ti). Let δ be a nonnegative integer
at most equal to W . We have ti = tW−δ +(i−W+δ)T .

The matrix β is then bj(ti) = (i−W + δ)j−1. Though
of rank N , the matrix β may be poorly conditioned for
large values of N and some choices of δ. We use the
TSVD to regularize this least squares problem. Let
β = USV ′ be the singular value decomposition of β,
where the prime denotes matrix transpose. Let λ > 0
be a positive constant. Then a better estimate of α in
ŷ(t) =

∑N
j=1 αjbj(t) is

α = V β†U ′

where β† = diag(1/σ1, . . . , 1/σs, 0, . . . , 0) and σ1 ≥
σ2, . . . ,≥ σs ≥ λ are the singular values of β which
are greater than or equal to λ.

We obtain the vector of the k + 1 first derivatives:

ŷ(r)(tW−δ) = CY

where C is computed offline. The explicit regulariza-
tion parameter may be chosen in a very heuristic way
by requiring the norm of C to be no higher than some
prespecified value. This provides guidelines for choos-
ing values for λ, δ, N and W as well. A formal proof
of the convergence of this differentiation scheme in the



lines of the general regularization theory earlier pre-
sented would be rather involved and is skipped.

Finally let us note that δ is a good measure of the de-
lay introduced by the differentiation scheme. Since we
know its value, corrective action may be taken in an
overall observer design to compensate for this delay.

4 The averaged finite differences
differentiation scheme

The idea (see [1] for more details) is to take quite stan-
dard finite difference operators

∆(r)
f,�,k,q

which approximate y(r) in the mean sense

∆(r)
f,�,k,qy(t) = y(r)(t) + c ((kq + 1)T )2 y(r+2)(ζ)

for some constant c and a mean value ζ. Here f is
the sampling frequency, T = 1/f , and ., k, q are nat-
ural numbers. Then we define the estimate of the rth
derivative of y as

ŷ(r)(t) =
1

2q + 1

q∑
j=−q

∆(r)
f,�,k,qy(t+ jT ) .

More explicitly, let 2.+1 be the number of data points
needed in the finite difference operator ∆(r)

f,�,k,q . The
window length is W = 2 ((.k + 1) q + 1) . The differen-
tiation scheme takes the form

ŷ(r)(tW−δ) = CY

where the matrix C depends on the differentiation op-
erators ∆(r)

f,�,k,q that are used to form the average ; C
is computed offline, once and for all. To be a regular-
ization strategy the parameters of the averaged finite
difference should satisfy some conditions [1]. As for the
Savitzky-Golay differentiation scheme, we may define a
formal explicit regularization parameter in terms of the
singular values of the matrix C. It is proved in [1] that
we actually have a differentiation scheme according to
the definition of this notion.

In practice, this scheme is quite flexible given the num-
ber of parameters which control its behavior. It is more
involved than the Savitzky-Golay scheme, and the time
delay

δ = ((.k + 1)q + .)T

it introduces is generally much larger.

5 The wavelet differentiation
scheme

We refer the reader to [2, 13] for more details on
wavelets. Functions considered here are assumed to

be in the space, L2(IR), of real-valued functions of
the real variable t which are square integrable. This
space L2(IR) is equipped with the usual inner product
〈f, g〉 =

∫
IR
f(t)g(t)dt . A scaling function is a function

with unit average which satisfies a scaling equation

φ

(
t

2

)
=

√
2

∑
k∈ZZ

hkφ(t− k)

where (hk)ZZ is a sequence of real (or perhaps com-
plex) numbers. Two scaling functions φ and φ∗ form
a pair of conjugate scaling functions if they satisfy
〈φ(t−i), φ∗(t−j)〉 = δi,j . A scaling function is orthogo-
nal if it is its own conjugate. In practice, if the gk’s are
the coefficients for φ∗, we have gk = (−1)k−1h∗1−k and
g∗k = (−1)k−1h1−k. Given a function x, we denote by
xj,n the function xj,n(t) =

√
2−jx(2−jt− n). For suit-

able h and h∗, the families (ψj,n)j,n∈ZZ and (ψ∗
j,n)j,n∈ZZ

define dual Riesz bases of L2(IR) [4, 13]. If h and h∗ are
compactly supported, then any signal y(t) with locally
finite energy can be decomposed as

y =
∑
n∈ZZ

cJ,nφJ,n +
∑

j∈ZZ,j≤J

dj,nψj,n (6)

with cj,n = 〈y, φ∗
j,n〉 and dj,n = 〈y, ψ∗

j,n〉. The coeffi-
cients cj,n and dj,n can be computed recursively across
the scales j using finite impulse response filter banks
(see Mallat [13]): for the direct wavelet transform

cj+1,p =
+∞∑

n=−∞
h∗n−2pcj,n (7)

dj+1,p =
+∞∑

n=−∞
g∗n−2pcj,n, (8)

while for the inverse wavelet transform

cj,p =
+∞∑

n=−∞
hp−2n cj+1,n+

+∞∑
n=−∞

gp−2n dj+1,n.

(9)

In practice, j is lower bounded and the coefficients cj,n
at the finest scale are taken to be the signal samples.

How do we estimate the derivatives of a signal through
its wavelet transforms? This is answered by the fol-
lowing result. Let φ and φ∗ be two conjugate scaling
functions such that φ is C1+ε for some ε > 0. Then (see
Lemarié-Rieusset [12]) there exist two conjugate scaling
functions φ̃ and φ̃∗ such that:

dφ
dt

(t) = φ̃(t) − φ̃(t− 1)

φ∗(t+ 1) − φ∗(t) =
dφ̃∗

dt
(t)



The related wavelets are defined by

ψ̃(t) =
1
4

dψ
dt

(t) and
dψ̃∗

dt
(t) = −4ψ∗(t) .

If y is differentiable then the decomposition of ẏ in the
basis defined by (φ̃, φ̃∗) is

ẏ =
∑
n∈ZZ

cJ,n − cj,n−1

2J
φ̃J,n +

∑
j≤J

∑
n∈ZZ

4dj,n

2j
ψ̃j,n .

This equation computes the coefficients of the deriva-
tive from the coefficients of the signal. The derivative
is computed using suitable filters: Let z denote the ad-
vance operator. Then the low pass filters h̃ =

∑
h̃kz

−k

and h̃∗ =
∑

h̃∗kz
−k satisfy

h̃(z) =
2

1 + z−1
h(z) and h̃∗(z) =

1 + z

2
h∗(z) (10)

The high pass filters g̃ and g̃∗ satisfy

g̃(z) =
1 − z−1

2
g(z) and g̃∗(z) = − 2

z − 1
g∗(z) (11)

Formulae (10, 11) and (7–9) are then used to compute
the derivative from its coefficients.

Specific properties of the wavelet analysis can be used
to regularize the differentiation operator. For instance,
Jaffard [11, 4] has related the pointwise Lipschitz reg-
ularity of a signal to the decay of its wavelet coeffi-
cients at the fine scales. Roughly speaking, a signal
is Lipschitz α at t iff its wavelet coefficients decay like
2−j(α+ 1

2 ) in the neighborhood of t when j → +∞. This
is to say that the pointwise regularity of a signal can
be analyzed and controlled through its wavelet coeffi-
cients. For example, setting to 0 all the wavelet co-
efficients which are beyond a certain scale yields the
maximum regularity allowed by the wavelet. The regu-
larized signal is then computed by considering dj,n = 0
in the reconstruction procedure. Moreover, this proce-
dure accurately approximates regular signals (Strang &
Fix [14]).

When facing noisy signals, Donoho and Johnstone [8]
(see also [13]) have proposed wavelet (hard and soft)
thresholding. Hard thresholding sets to 0 all coefficients
which are below a given threshold. The latter is theo-
retically related to the noise variance and to the num-
ber of data samples; it can also be determined based on
practical issues. Zeroing small wavelet coefficients re-
moves most of the noise contribution while preserving
the large coefficients which represent the sharp tran-
sients of the signal.
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[12] P. G. Lemarié-Rieusset, Analyses multi-résolutions
non orthogonales, commutation entre projecteurs
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